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Abstract 
 Based on image sparse representation in the shearlet domain, we proposed a 21L sparsity 

regularized unconvex variation model for image super-resolution. The 21L regularizer term constrains the 

underlying image to have a sparse representation in shearlet domain. The fidelity term restricts the 
consistency with the measured imaged in terms of the data degradation model. Then, the variable splitting 
algorithm is used to break down the model into a series of constrained optimization problems which can be 
solved by alternating direction method of multipliers. Experimental results demonstrate the effectiveness of 
the proposed method, both in its visual effects and in quantitative terms. 
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1. Introduction 

Super-resolution (SR) technique offers a possibility to produce an image with a high-
resolution from a set of images with low-resolution [1].With the theory of signal estimation, it 
offers the promise of overcoming some of the inherent resolution limitations of low-cost imaging 
sensors allowing better utilization of the growing capability of high-resolution displays, and 
remedies the shortage of the hardware. The super-resolution image reconstruction algorithm 
mainly includes four categories, algorithm of bi-cubic interpolation, reconstruction based 
method, study based algorithm and sparse-representation based approach. The algorithm of bi-
cubic interpolation method is the simplest techniques. The development of reconstruction based 
method is more mature, but when with less low-resolution image prior knowledge cannot 
reconstruct image. Reconstruction based method and sparse-representation based algorithm 
are currently a very active area of research. The sparse-representation based method including 
Yang [2] proposes a new SR method under the condition of over-complete dictionary, Wang [3] 
presents a SR algorithm based on iterative learning redundant dictionary, Sun [4],[5] proposes 
sparsity regularized image super-resolution by forward-backward operator splitting method and 
multimorphology sparsity regularized image super-resolution algorithm, Adler [6] raises a 
shrinkage learning approach for single image super-resolution with overcomplete 
representations.  

In sparse-representation based super-resolution methods, we often use 0L and 1L as 

sparsity regularized term. For 0L regularization is a NP-hard problem and solving it generally is 

intractable, and 1L regularization produces more sparse solution just need to be solving a 

convex optimization problem, but the sparseness of solution and robustness is not good. Hence, 

a new regularization emerges as the times require, that is the 21L regularization, it easier to be 

solved than 0L regularization, at the same time it has better sparse and robustness than 1L
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regularization. So the model of super-resolution based on shearlet 21L regularizer was 

proposed in this paper. Using Variable Splitting method decoupling the original problem, and 
introducing alternating direction method of multipliers solves the simple constrained optimization 
problems. 
 
 
2. Sparsity regularized SR model 
 
2.1. Degradation model 

The SR task is cast as the inverse problem of recovering the original high-resolution 
image by fusing the low-resolution image y , based on reasonable assumptions or prior 

knowledge about the observation model that maps the high-resolution image to the low-
resolution ones.  

The reconstruction of high-resolution images is sometimes modeled by 
 

nDBFxy                                                             (1) 

 
where y is the observed low-resolution input image, x is the high-resolution image, F is a 

relative motion matrix, B is a blurring filter convolution resolution matrix and D is a down-
sample operator matrix, n is the random additive noise. There is a bounded operator H , let 

DBFH  .Then Eq. (1) amounts to                         
    

nHxy                                                             (2) 

 
Super-resolution image reconstruction remains extremely ill-posed, since for a given 

low-resolution input y , infinitely many high-resolution images x satisfy the above reconstruction 

constraint. 
 

2.2. Sparsity regularized SR 
Recently years, sparse representation has been a popular area of research. The ideal 

image sparse representation in shearlet domain, and then the problem (2) can be written as 
following                               

 

nHSy                                                        (3) 

 
where S  stands for the shearlet -based,  represents sparse coefficient. 

Various regularization methods have been proposed to further stabilize the inversion of 
this ill-posed problem. We are asked to recover x from observation y such that x is of the 

sparsest structure (that is, x  has the fewest nonzero components). Thus, the sparsity problems 

can be modeled as the following so called 0L  regularization problem  

 

0
min 


..ts  nHSy                                                   (4) 

 

where 
0

 formally called 0L  norm, is the number of nonzero components of  .  

The 0L regularization can be understood as penalized least squares with penalty
0

 . 

The complexity of the model is proportional with the number of variables, and solving the model 
generally is intractable. In order to overcome such difficulty, many researchers have suggested 

to relax the 0L regularization and instead, to consider the following 1L regularization [7] 
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1
min 


 ..ts  nHSy                                               (5)  

 

where 
1

 is the 1L norm. The 1L regularization is a convex quadratic optimization problem, 

and therefore, can be very efficiently solved. However, the 1L regularization cannot handle the 

collinearity problem, and cannot recover a signal or image with the least measurements when 
applied to compressed sensing. Thus, a further modification is required. Among such efforts, a 

very natural improvement is the suggestion of the 21L regularization. 

 
 

3. 2/1L  sparsity regularized SR model 

We have conducted a continuation study of a new regularization framework, 21L
regularization, for better solution of sparsity problem [8]. Then Eq. (5) amounts to 
 

21

21
min 


 ..ts  nHSy                                          (6) 

 

where 
21

21
 is the 21L  norm.  

 

According to the theory of 21L regularization, 21L sparsity regularized super-resolution 

reconstruction can be modeled as a variational problem as follows 
 

2

2

21

21 2

1
minˆ yHS  


                                            (7) 

 

where ̂  is the estimation of the coefficient  . It has been shown in the previous studies [9], 

that 21L regularization provides a potentially powerful new approach for sparsity problems which 

is capable of yielding more sparse solutions than 1L regularization, and it performs best among 

all qL regularizations with q in ]1,0( . The 21L regularization, however, leads to a nonconvex, 

non-smooth and non-Lipschitz optimization problem difficult to be solved fast and efficiently. 

Accordingly, we propose the algorithm of variable splitting to solve 21L regularization, can get 

optimal and the only solution efficiently.  
Afonso [10] proposes a new algorithm of variable splitting to deal with image inverse 

problem. Variable splitting (VS) is a simple procedure that consists in creating a new variable, 
and then addressed using the alternating direction method of multipliers (ADMM). We now 
return to the unconstrained optimization formulation of regularized image recovery in (7). By the 
theory of variable splitting, with 

 
2

21 2

1
)( yHSf                                                            (8) 

 

 
21

212 )(  f                                                                        (9) 

 

IG                                                                                   (10) 
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The constrained optimization formulation is thus 
 

21

21

2

2, 2

1
min 


 yHSa     ..ts                                               (11) 

 
Using variable splitting addresses the constrained optimization formulation (11) leads to 
 

     '1

1 k
HH

k yHSIHSHS  


                                                (12) 
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                                   (13) 

 

where kkk d  ' , is the multipliers parameter,   
















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




 23

38
arccos

 . We can 

drive the optimal and the only solution by cycling iterative to solve the formulations (12) and 

(13), that is high-resolution image ̂ˆ Sx  . 

From what has been discussed above, the approach of process of using variable 

splitting solve the 2/1L sparsity regularized super-resolution model as follows. 

Step 1  Input an observed image y , sparse representation in shearlet domain, and change the 

priori constraints of ideal image to the sparse priori constraints of the coefficients. 
Step 2  Initialize the number of iterations parameter k , multipliers parameter and the 

terminate parameter . 
Step 3  Solve the model. Iterative solving formulations (12) and (13), until satisfy the stop 

criteria       2

2

1 kk . 

Step 4  Outputs. Will be the optimal coefficient into the ̂ˆ Sx  , that is SR reconstruction high-

resolution image. 
 

 
4. Experiment and analysis 

We apply our methods to generic images such as Lena, Goldhill, Boat and Camera, and 
compared with bi-cubic interpolation [11] and the SALSA [10] (split augmented Lagrangian 
shrinkage algorithm). Experiments have same iterative times 150k and the noise standard 

deviation 47.0 . We evaluate the results of various methods three of the PSNR, SSIM and 
visually.  

In our experiments, we magnify the input low resolution image by a factor of 2. Table 1 
compares the performance of bi-cubic interpolation, SALSA and our algorithm, in terms of 
PSNR and SIMM. The proposed approach achieved an average gain of 1.577dB and 0.02809 
over the better of bi-cubic interpolation and SALSA. Detail PSNR and SIMM are presented in 
Table 1 for all methods. We can conclude that our algorithm generates high-resolution images 
that are competitive or even superior in quality to images produced by other similar super-
resolution methods. 

 
 
 
 
 
 
 



Buletin TEI  ISSN: 2089-3191  
 

Image Super-Resolution Reconstruction Based on L1/2 Sparsity (Chengzhi Deng) 

159

Table 1. PSNR and SSIM comparisons of different methods 

image 
PSNR/dB 

Bicubic SALSA Our Method 

Lena 31.6612 31.6965 33.2548 

Goldhill 30.6019 30.9542 31.3386 

Boat 30.8374 31.2088 31.82 

Camera 31.8414 31.6881 33.3851 

image 
SSIM 

Bicubic SALSA Our Method 

Lena 0.91446 0.91979 0.94788 

Goldhill 0.82902 0.84544 0.8712 

Boat 0.87011 0.88357 0.90263 

Camera 0.95121 0.94318 0.97041 

 
 

             
(a) LR                           (b) Bicubic                              (c) SALSA                               (d) Our Method 

 
Figure 1. Super-resolution of the image Lena 

 
 

             
(a) LR                           (b) Bicubic                              (c) SALSA                               (d) Our Method 

 
Figure 2. Super-resolution of the image Goldhill 

 
 

             
(a) LR                           (b) Bicubic                              (c) SALSA                               (d) Our Method 

 
Figure 3. Super-resolution of the image Boats 
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(a) LR                           (b) Bicubic                              (c) SALSA                               (d) Our Method 

 
Figure 4. Super-resolution of the image Camera 

 
 

In Figure 1 - Figure 4, we compare our method with several more state-of-the-art 
methods on images of Lena, Goldhill, Boats and Camera, including bi-cubic interpolation and 
SALSA. The results of these Figures , which indicate that our method can generate much higher 
resolution images. 
 
 
5. Conclusion 

We have presented a new method toward image super-resolution sparse-

representation based, that is 2/1L  sparsity regularized image super-resolution in shearlet 

domain. This super-resolution reconstruction model server shearlet as the image sparse 
representation, the sparsity as the regularization. Then, proposed variable splitting algorithm to 
solve the model, through alternating direction method of multipliers. Experiment results 
demonstrate the effectiveness of the proposed algorithm in this paper. 
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